Writing Performant

Concurrent Data Structures

Adrian Alic

Software Engineer @ DFINITY
Website: https://alic.dev
Contact: contact@alic.dev

Rust Meetup Zurich
March 28, 2023

Overview

Case-study: Multi-producer, single-consumer queue.

consumer

Overview

Case-study: Multi-producer, single-consumer queue.

consumer

Goals:
m How to write such a queue
m How to make it fast
m How to reason about correctness

MOTIVATION

A Multi-Core Logger

UART
(FTDI FT2232)

Freedom U540 SoC

us4

U5

low—‘througkpu‘t
seﬁo\l device

us4

U5

]

ES51

Figure: A sketch of a 5-core RISC-V SoC.

The Problem With Locks

THE IDEA

A Bunch of Ring Buffers
v

concurrent threads produce
doata stream

/

push data to thread-local
FIFO ring buffer

% consumer P°“$ and empties

the queues in a loop
Consumer

Naive Rust Definition

// if you like pointer indirection
struct TLQ {

buffer: Vec<u8>,

head: ui6,

tail: u16,

}

// if buffer size is known at compile-time
struct TLQ<const C: usize> {

buffer: [u8; C],

head: ui6,

tail: u16,

}

However: this definition has some problems...

Lack of Cache Locality

If we store multiple TLQs in an array, iterating over heads and
tails becomes costly.

TLR #1 TLR #2
I iR ﬂ

buPPer head | tail bufPer head | tail

Lack of Cache Locality

If we store multiple TLQs in an array, iterating over heads and
tails becomes costly.

TLo #1 TLR #2

I

bufPfer

head | tail bufPer head | tail

~~—~F — = ~A

This problem of traversing fields is common in game

development (ECS).

Improving Cache Locality

One solution: Struct of Arrays.

Improving Cache Locality

One solution: Struct of Arrays.

struct Offset {
head: ui6,
tail: u16,

Improving Cache Locality

One solution: Struct of Arrays.

struct Offset {
head: ui6,
tail: u16,

}

struct Buffer<const C: usize> {

}

buffer: [u8; C],

Improving Cache Locality

One solution: Struct of Arrays.

struct Offset {
head: ui6,
tail: ua6,

}

struct Buffer<const C: usize> {
buffer: [u8; C],
}

struct Queue<const T: usize, const C: usize> {
offsets: [Offset; T],
buffers: [Buffer<C>; T]

}

New Layout Visualized

Offsets Buffers

l I

head tail head tail buffer #1 %
N T

Figure: Our consumer can now iterate through all offsets without tons
of cache misses.

Some languages like Zig have built-in support for the SoA
pattern’.

"https://kristoff.it/blog/zig-multi-sequence-for-loops/

8]

https://kristoff.it/blog/zig-multi-sequence-for-loops/

THE MEMORY MODEL

The Illusion of Safety on x86

AND YOU GET ORDERING::RELAKED &«
v . |
AND YOU GET ORDERING:RELAKED 4 1

JERYONE GETS ORDERING:-RELAXKED

Figure: Don't do this. The memory ordering | chose for my atomic ops
only worked on x86, but blew up on a weaker memory model (aarch6s).

9

Segfaults on aarch64

% O
-
i -
=5 2 B 28 2
= g & < o 2
= E 5 g E O A x @
Property < = A& ©» X N
Memory Ordering Loads Reordered After LoadsorStores? Y Y Y Y Y Y
Stores Reordered After Stores? Y Y Y Y Y Y
Stores Reordered After Loads? Y Y Y Y Y Y Y Y Y
Atomic Instructions Reordered With Y Y Y Y v
Loads or Stores?
Dependent Loads Reordered? Y
Dependent Stores Reordered?
Non-Sequentially Consistent? Y Y Y Y Y Y Y Y Y
Non-Multicopy Atomic? Y Y Y Y Y Y Y Y
Non-Other-Multicopy Atomic? Y Y Y Y Y
Non-Cache Coherent? Y

Figure: McKenney [1, p. 352] lists differences between hardware
platforms in detail.

C11 Memory Model

Rust follows the C11 memory ordering spec?. It includes:

*https://en.cppreference.com/w/cpp/atomic/memory_order

https://en.cppreference.com/w/cpp/atomic/memory_order

C11 Memory Model

Rust follows the C11 memory ordering spec?. It includes:

Specification of modification order:
m RR/RW/WR/WW Coherency

Flavors of "before":
m Sequenced-before
m Dependency-ordered before
m Inter-thread happens-before
m Happens-before

Also relevant: evaluation order3

*https://en.cppreference.com/w/cpp/atomic/memory_order
3https://en.cppreference.com/w/cpp/language/eval_order

https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/language/eval_order

Concurrency Behavior of Our Queue

consumer proclucer

“https://doc.rust-lang.org/std/sync/atomic/struct.
AtomicU64.html#method.compare_exchange

https://doc.rust-lang.org/std/sync/atomic/struct.AtomicU64.html#method.compare_exchange
https://doc.rust-lang.org/std/sync/atomic/struct.AtomicU64.html#method.compare_exchange

Concurrency Behavior of Our Queue

consumer proclucer

Our queue is essentially an SPSC without competing stores - thus
we have no need for atomic RMW primitives®.

“https://doc.rust-lang.org/std/sync/atomic/struct.
AtomicU64.html#method.compare_exchange

https://doc.rust-lang.org/std/sync/atomic/struct.AtomicU64.html#method.compare_exchange
https://doc.rust-lang.org/std/sync/atomic/struct.AtomicU64.html#method.compare_exchange

The Two Basic Queue Operations

Our SPSC requires two release-acquire pairs. We can look at the
first one below.

// producer thread // consumer thread
fn push(data) { fn pop() [u8] {
h = head.load(_) // read index
new_h = h + data.len() h = tail.load(_)
t = tail.load(_)
// write data
buffer[h..new_h] = data; // read data
buffer[t..h]
// update index }
h.store(new_h,)

The Two Basic Queue Operations

Our SPSC requires two release-acquire pairs. We can look at the

first one below.

// producer thread
fn push(data) {
h = head.load(_)

new_h = h + data.len()

// write data

buffer[h..new_h] = data;

// update index

h.store(new_h, -)

// consumer thread
fn pop() [u8] {
// read index

h = tail.load(-)
t = tail.load(_)

// read data
buffer[t..h]

IMPLEMENTATION IN RUST

Avoiding False Sharing

Since offsets are accessed concurrently, we need to be aware of
cache coherence effects.

64B cache line

“ % 4 tails

ubd | ubd | ub4 | ub4 E heads

Figure: The most common solution is to pad all shared fields to a cache
line.

Cache-Alignment for Each Offset

Pao(o(ing

P(M‘Xo‘?ng

Pao(o(ing

poso(o(ing

Pado(?ng

Pao(o(inﬂ

pow(o(ing

Poso(o(ing

tails
[T neads

Figure: Fully padded version. No false sharing will occur.

A Possible Middle Ground

|64

poxolo(ing

padding

pao(o{?ug

podo(?ng

tails
heao(s

Figure: This hybrid version allows for atomic batch updates.

Implementation in Rust

#[repr(align(64))]
struct Tail(u16);

#[repr(align(6s4))]
struct Head(u16);

struct Offsets<const T: usize> {
tails: [Tail; T1,
heads: [Head; T],

}

// Or alternatively, use the crossbeam_util crate
struct Offsets<const T: usize> {

tails: [CachePadded<Tail>; T],

heads: [CachePadded<Head>; T],

False Sharing Can Have a Large Impact

0 Dummy Instructions

500 Dummy Instruction<
= packed

80ms

60ms -

40ms A

20ms A

0oms -

Likl

200ms A

150ms

100ms -

50ms A

Oms -

X3 hybrid

!

Figure: From a benchmark on false sharing >

*https://alic.dev/blog/false-sharing

https://alic.dev/blog/false-sharing

Consumer-Side Pointer Compression

"?“"“"' O|l1|la|3|4|5]6|2]|%]|a
mo(e,x

i >> 1 0 1 2 3 q

e >> 2 0 1 2

iy D> 3 0} 1

Figure: We can decrease the addressing granularity, reducing memory
footprint.

Pointer Compression Visualized

re_al ‘tod[

O1aﬁ456??q

Pree until compre_sse_d
tosil

Implementation in Rust

struct Consumer<const C: usize> {
shared_tail: *const AtomicU16,
local_tail: usize,
}
fn update_tail(&mut self, val) {
self.local_tail = val;
self.shared _tail.store(
compress(self.local_tail, C), // <---
Ordering::Release
Ik
}
fn compress(tail: usize, C: usize) -> u16 {
let shift = if C <= 16 { @ } else { C - 16 };
(tail >> shift)

Local Caching of Offsets

Local Caching of Offsets

_‘taﬁl m head r:j elements

01:1iq

¥

10

1l

Local Caching of Offsets

_ tail

D head r:j elements

012i<45

6

?

'Y

10

1l

'

10

1l

Local Caching of Offsets

_'tadl D head r:j elements

012i456?‘zq1011
o[+ [=]s]4]sel# =[]0

Local Caching of Offsets

_‘taﬁl [Jhead [elements

5l6|FfT|g|la|10]|n

OCl1ja2[3[4|5|6|F|s|a]10]n

OCl1|a|3|4|5|6(F|%([a[10]1

oOl1|a|3|4|5|6|F|e|a|10]|1

01asqslq1011

CRAFTING SAFE ABSTRACTIONS

Limits of the Borrow Checker

The borrow checker and lifetime system is not designed to
reason about correctness of arbitrary concurrent data structures.

Example: Atomics

impl AtomicUsize {
pub fn store(&self, val: bool, order: Ordering) {
// SAFETY: any data races are prevented by atomic
// intrinsics and the raw pointer passed in is
// valid because we got it from a reference.
unsafe {
atomic_store(self.v.get(), val as u8, order);

Newtyping Heads and Tails

Newtyping your data structures to give them semantics can
prevent many subtle bugs.

type utail = u16;
type udefault = u32;

AtomicU16;
AtomicU32;

type AtomicTail
type AtomicHead

// Read and write permissions
struct RWHead<const C: usize>(*const AtomicHead);
struct RWTail<const C: usize>(*const AtomicTail);

// Read-only permission
struct ReadOnlyHead<const C: usize>(xconst AtomicHead);
struct ReadOnlyTail<const C: usize>(*const AtomicTail);

Incorporating Newtypes Into Data Structure

Good newtypes communicate intent clearly.

pub struct Consumer<...> {
tails: [RWTail<C>; T],
heads: [ReadOnlyHead<C>; T],
buffer: ReadOnlyBuffer<T, S, L>,
}

pub struct Producer<...> {
pub head: RWHead<C>,
pub tail: ReadOnlyTail<C>,
pub buffer: RWBuffer<L>,

Const Generics Help With Safety

impl<
const T: usize, // # of producers
const C: usize, // bitsize of queue
const S: usize, // # of bytes (total)
const L: usize, // # of bytes (per producer)

A: ThreadSafeAlloc, // custom allocator type
> ProducerHandle<T, C, S, L, A> {
/] ...

}

Reading From Queue With RAlII

fn pop(&self, pid: usize) -> Vec<u8>;

Reading From Queue With RAlII

fn pop(&self, pid: usize) -> Vec<u8>;

fn pop(&self, pid: usize, dst: &mut [u8]) -> usize;

Reading From Queue With RAlII

fn pop(&self, pid: usize) -> Vec<u8>;
fn pop(&self, pid: usize, dst: &mut [u8]) -> usize;

fn pop<'a>(&'a mut self, pid: usize) -> &'a [u8];

Reading From Queue With RAlII

fn pop(&self, pid: usize) -> Vec<u8>;

fn pop(&self, pid: usize, dst: &mut [u8]) -> usize;
fn pop<'a>(&'a mut self, pid: usize) -> &'a [u8];

fn pop<'a>(&'a mut self, pid: usize) -> Section<'a>;
struct Section<'a>{buffer: &'a [u8], ... };

impl<'a> Drop for Section<'a> {
fn drop(&mut self) {
unsafe {
// increment tail atomically

Reading From Queue With RAlII

// max capacity is 273 - 1
let (tx, mut rx) = wfmpsc::queue!(bitsize: 3, producers: 1);
tx[e].push(b"5678901");

let mut section = rx.pop(e);
for c in section.get_buffer().iter() {
// iterate over section and do things

}
} // dropping buffer

Reading From Queue With RAlII

// max capacity is 2”3 - 1
let (tx, mut rx) = wfmpsc::queue!(bitsize: 3, producers: 1);
tx[@].push(b"5678901");

let mut section = rx.pop(e);
for c in section.get_buffer().iter() {
// iterate over section and do things

}

let mut another_one = rx.pop(e);

// ANNANANNNANN

// |

// + can't create another section
// while previous one in scope

black_box(§ion);
} // dropping buffer

RUNTIME ANALYSIS WITH MIRI

What Is Miri?

Miri® is an intepreter for Rust’s Mid-Level IR that dynamically
checks for undefined behavior.

Checks include:
m OOB memory access & use-after-free
m Illegal memory alignments
m Reading from uninitialized memory
m Data races
m Violation of stacked borrows aliasing model

®https://github.com/rust-lang/miri

https://github.com/rust-lang/miri

Issue #1: Uninitialized Arrays

Can you spot a potential problem here?

let mut producers: [Producer<...>; T] = { mem::zeroed() };

for (i, p) in producers.iter_mut().enumerate() {
*p = self.get_producer_handle(i);

// ANAAAANANAANANAANANANAANANNANNANANN

/7

// asssume this function returns a valid object

Issue #1: Uninitialized Arrays

Can you spot a potential problem here?

let mut producers: [Producer<...>; T] = { mem::zeroed() };

for (i, p) in producers.iter_mut().enumerate() {
*p = self.get_producer_handle(i);

// ANAAAANANAANANAANANANAANANNANNANANN

/7

// asssume this function returns a valid object

}

Problem: The assignment calls Drop: :drop on the old value.
This violates the producer’s atomic refcount invariant.

Issue #1: Uninitialized Arrays

let mut producers: [MaybeUninit<Producer<...>>; T] =
unsafe { MaybeUninit::uninit().assume_init() };

for (i, p) in producers.iter_mut().enumerate() {
p.write(prod_handle(ptr, i as u8));
}

// FIXME: Cannot do mem::transmute from MaybeUninit to
// a const generic array.

// See https://github.com/rust-lang/rust/issues/61956
let prod_ptr = addr_of!(producers) as xconst _;

let producers = unsafe { core::ptr::read(prod_ptr) };

Issue #2: Dangling Pointer

LTIV, TITT OIS S
op |/ i

memepy #2

N
N

N

A
Z

Push

N

tail
Figure: Elements can spill over the boundary of the ring buffer, so we
need to invoke memcpy twice.

Issue #2: Dangling Pointer

// first memcpy

core::ptr::copy_nonoverlapping(
src as xconst u8,
dst as *mut u8,
L - head,

)8

// second memcpy

core::ptr::copy_nonoverlapping(
(src + C - head) as *const u8,
self.buffer.e as *mut u8,
len - L + head,

IE

Issue #2: Dangling Pointer

// first memcpy
core::ptr::copy_nonoverlapping(
src as *const u8,
dst as *mut u8,

?
)i
// second memcpy
core::ptr::copy_nonoverlapping(
(src + |[CHESIREAE) as *const u8,
self.buffer.e as *mut u8,
len - L + head,
)i

Issue #3: Incorrect Pointer Arithmetics (again)

error: unsupported operation: racy imperfectly overlapping
atomic access is not possible in the C++20 memory model,
and not supported by Miri's weak memory emulation

--> /Users/zk/wfmpsc/src/lib.rs:275:13

atomic.store(val, ord);
ANNANANNNNANANNNANAANANANNANANANANN racy 1mperfect1y
overlapping atomic access is not possible
in the C++20 memory model, and not

supported by Miri's weak memory emulation

Issue #3: Incorrect Pointer Arithmetics (again)

CONCLUSION

Conclusion

m Be cognisant of the language’s semantic model

"https://doc.rust-lang.org/nomicon/

https://doc.rust-lang.org/nomicon/

Conclusion

m Be cognisant of the language’s semantic model
» The Rustonomicon’ is a good starting point

"https://doc.rust-lang.org/nomicon/

https://doc.rust-lang.org/nomicon/

Conclusion

m Be cognisant of the language’s semantic model
» The Rustonomicon’ is a good starting point

m Familiarize yourself with the memory models that underpin
your stack

"https://doc.rust-lang.org/nomicon/

https://doc.rust-lang.org/nomicon/

Conclusion

m Be cognisant of the language’s semantic model
» The Rustonomicon’ is a good starting point

m Familiarize yourself with the memory models that underpin
your stack

m Use RAIl and lifetimes to create safe viewtypes

"https://doc.rust-lang.org/nomicon/

https://doc.rust-lang.org/nomicon/

Conclusion

m Be cognisant of the language’s semantic model
» The Rustonomicon’ is a good starting point

m Familiarize yourself with the memory models that underpin
your stack

m Use RAIl and lifetimes to create safe viewtypes
m Memory fragmentation is a powerful trade off

"https://doc.rust-lang.org/nomicon/

https://doc.rust-lang.org/nomicon/

Conclusion

m Be cognisant of the language’s semantic model
» The Rustonomicon’ is a good starting point

m Familiarize yourself with the memory models that underpin
your stack

m Use RAIl and lifetimes to create safe viewtypes
m Memory fragmentation is a powerful trade off
m Learn from the OGs

"https://doc.rust-lang.org/nomicon/

https://doc.rust-lang.org/nomicon/

More Resources

o All crates Click or press 'S" to search, ‘7' fol

Enum std::synci:atomic:Ordering

Enum Ordering :
[-] #lnon_exhaustivel

pub anum Ordering {
Relaxed,
Aeagel Roloase,

variants

hequire
Relaved
Reloaso

seqcst

Tait Implementatians.
mic operations synch

clone

copy

Kash

PartialEq-Ordering>

Figure: Atomics and Memory Ordering by Jon Gjengset [video]

40 [140

https://www.youtube.com/watch?v=rMGWeSjctlY

THANKS FOR YOUR ATTENTION!

References

[3 PAUL E MCKENNEY.
IS PARALLEL PROGRAMMING HARD, AND, IF SO, WHAT CAN YOU DO ABOUT
Im?
arXiv preprint arXiv:1701.00854, 2017.

	Motivation
	The Idea
	The Memory Model
	Implementation in Rust
	Crafting Safe Abstractions
	Runtime Analysis with Miri
	Conclusion
	Appendix

