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Overview

Case-study: Multi-producer, single-consumer queue.

Goals:
How to write such a queue
How to make it fast
How to reason about correctness
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Motivation



A Multi-Core Logger

Figure: A sketch of a 5-core RISC-V SoC.
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The Problem With Locks

Figure: Locking causes unpredicable latency jitter.
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The Idea



A Bunch of Ring Buffers
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Naive Rust Definition

// if you like pointer indirection
struct TLQ {

buffer: Vec<u8>,
head: u16,
tail: u16,

}

// if buffer size is known at compile-time
struct TLQ<const C: usize> {

buffer: [u8; C],
head: u16,
tail: u16,

}

However: this definition has some problems...
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Lack of Cache Locality

If we store multiple TLQs in an array, iterating over heads and
tails becomes costly.

This problem of traversing fields is common in game
development (ECS).
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Improving Cache Locality

One solution: Struct of Arrays.
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Improving Cache Locality

One solution: Struct of Arrays.

struct Offset {
head: u16,
tail: u16,

}

struct Buffer<const C: usize> {
buffer: [u8; C],

}

struct Queue<const T: usize, const C: usize> {
offsets: [Offset; T],
buffers: [Buffer<C>; T]

}
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New Layout Visualized

Figure: Our consumer can now iterate through all offsets without tons
of cache misses.

Some languages like Zig have built-in support for the SoA
pattern1.

1https://kristoff.it/blog/zig-multi-sequence-for-loops/
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The Memory Model



The Illusion of Safety on x86

Figure: Don’t do this. The memory ordering I chose for my atomic ops
only worked on x86, but blew up on a weaker memory model (aarch64).
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Segfaults on aarch64

Figure: McKenney [1, p. 352] lists differences between hardware
platforms in detail.
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C11 Memory Model

Rust follows the C11 memory ordering spec2. It includes:

2https://en.cppreference.com/w/cpp/atomic/memory_order
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C11 Memory Model

Rust follows the C11 memory ordering spec2. It includes:

Specification of modification order:
RR/RW/WR/WW Coherency

Flavors of "before":
Sequenced-before
Dependency-ordered before
Inter-thread happens-before
Happens-before

Also relevant: evaluation order3

2https://en.cppreference.com/w/cpp/atomic/memory_order
3https://en.cppreference.com/w/cpp/language/eval_order
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Concurrency Behavior of Our Queue

Our queue is essentially an SPSC without competing stores - thus
we have no need for atomic RMW primitives4.

4https://doc.rust-lang.org/std/sync/atomic/struct.
AtomicU64.html#method.compare_exchange
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The Two Basic Queue Operations

Our SPSC requires two release-acquire pairs. We can look at the
first one below.

// producer thread // consumer thread
fn push(data) { fn pop() [u8] {
h = head.load(_) // read index
new_h = h + data.len() h = tail.load(_)

t = tail.load(_)
// write data
buffer[h..new_h] = data; // read data

buffer[t..h]
// update index }
h.store(new_h, _)

}
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The Two Basic Queue Operations

Our SPSC requires two release-acquire pairs. We can look at the
first one below.

// producer thread // consumer thread
fn push(data) { fn pop() [u8] {
h = head.load(_) // read index
new_h = h + data.len() h = tail.load( acquire )

t = tail.load(_)
// write data
buffer[h..new_h] = data; // read data

buffer[t..h]
// update index }
h.store(new_h, release )

}
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Implementation in Rust



Avoiding False Sharing

Since offsets are accessed concurrently, we need to be aware of
cache coherence effects.

Figure: The most common solution is to pad all shared fields to a cache
line.
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Cache-Alignment for Each Offset

Figure: Fully padded version. No false sharing will occur.

16 40



A Possible Middle Ground

Figure: This hybrid version allows for atomic batch updates.
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Implementation in Rust

#[repr(align(64))]
struct Tail(u16);

#[repr(align(64))]
struct Head(u16);

struct Offsets<const T: usize> {
tails: [Tail; T],
heads: [Head; T],

}

// Or alternatively, use the crossbeam_util crate
struct Offsets<const T: usize> {

tails: [CachePadded<Tail>; T],
heads: [CachePadded<Head>; T],

}
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False Sharing Can Have a Large Impact

Figure: From a benchmark on false sharing 5

.

5https://alic.dev/blog/false-sharing
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Consumer-Side Pointer Compression

Figure: We can decrease the addressing granularity, reducing memory
footprint.
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Pointer Compression Visualized
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Implementation in Rust

struct Consumer<const C: usize> {
shared_tail: *const AtomicU16,
local_tail: usize,

}
fn update_tail(&mut self, val) {

self.local_tail = val;
self.shared_tail.store(

compress(self.local_tail, C), // <---
Ordering::Release

);
}
fn compress(tail: usize, C: usize) -> u16 {

let shift = if C <= 16 { 0 } else { C - 16 };
(tail >> shift)

}
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Local Caching of Offsets
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Local Caching of Offsets
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Crafting Safe Abstractions



Limits of the Borrow Checker

The borrow checker and lifetime system is not designed to
reason about correctness of arbitrary concurrent data structures.

Example: Atomics

impl AtomicUsize {
pub fn store(&self, val: bool, order: Ordering) {

// SAFETY: any data races are prevented by atomic
// intrinsics and the raw pointer passed in is
// valid because we got it from a reference.
unsafe {

atomic_store(self.v.get(), val as u8, order);
}

}
}
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Newtyping Heads and Tails

Newtyping your data structures to give them semantics can
prevent many subtle bugs.

type utail = u16;
type udefault = u32;

type AtomicTail = AtomicU16;
type AtomicHead = AtomicU32;

// Read and write permissions
struct RWHead<const C: usize>(*const AtomicHead);
struct RWTail<const C: usize>(*const AtomicTail);

// Read-only permission
struct ReadOnlyHead<const C: usize>(*const AtomicHead);
struct ReadOnlyTail<const C: usize>(*const AtomicTail);
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Incorporating Newtypes Into Data Structure

Good newtypes communicate intent clearly.

pub struct Consumer<...> {
tails: [RWTail<C>; T],
heads: [ReadOnlyHead<C>; T],
buffer: ReadOnlyBuffer<T, S, L>,

}

pub struct Producer<...> {
pub head: RWHead<C>,
pub tail: ReadOnlyTail<C>,
pub buffer: RWBuffer<L>,

}
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Const Generics Help With Safety

impl<
const T: usize, // # of producers
const C: usize, // bitsize of queue
const S: usize, // # of bytes (total)
const L: usize, // # of bytes (per producer)
A: ThreadSafeAlloc, // custom allocator type
> ProducerHandle<T, C, S, L, A> {

// ...
}
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Reading From Queue With RAII

fn pop(&self, pid: usize) -> Vec<u8>;
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Reading From Queue With RAII

fn pop(&self, pid: usize) -> Vec<u8>;

fn pop(&self, pid: usize, dst: &mut [u8]) -> usize;

fn pop<'a>(&'a mut self, pid: usize) -> &'a [u8];

fn pop<'a>(&'a mut self, pid: usize) -> Section<'a>;

struct Section<'a>{buffer: &'a [u8], ... };

impl<'a> Drop for Section<'a> {
fn drop(&mut self) {

unsafe {
// increment tail atomically

}
}

}
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Reading From Queue With RAII

// max capacity is 2^3 - 1
let (tx, mut rx) = wfmpsc::queue!(bitsize: 3, producers: 1);
tx[0].push(b"5678901");
{

let mut section = rx.pop(0);
for c in section.get_buffer().iter() {

// iterate over section and do things
}

} // dropping buffer
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Reading From Queue With RAII

// max capacity is 2^3 - 1
let (tx, mut rx) = wfmpsc::queue!(bitsize: 3, producers: 1);
tx[0].push(b"5678901");
{

let mut section = rx.pop(0);
for c in section.get_buffer().iter() {

// iterate over section and do things
}
let mut another_one = rx.pop(0);
// ^^^^^^^^^
// |
// + can't create another section
// while previous one in scope
black_box(&section);

} // dropping buffer
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Runtime Analysis with Miri



What Is Miri?

Miri6 is an intepreter for Rust’s Mid-Level IR that dynamically
checks for undefined behavior.

Checks include:
OOB memory access & use-after-free
Illegal memory alignments
Reading from uninitialized memory
Data races
Violation of stacked borrows aliasing model

6https://github.com/rust-lang/miri
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Issue #1: Uninitialized Arrays

Can you spot a potential problem here?

let mut producers: [Producer<...>; T] = { mem::zeroed() };

for (i, p) in producers.iter_mut().enumerate() {
*p = self.get_producer_handle(i);
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^
// |
// asssume this function returns a valid object

}

Problem: The assignment calls Drop::drop on the old value.
This violates the producer’s atomic refcount invariant.
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Issue #1: Uninitialized Arrays

let mut producers: [MaybeUninit<Producer<...>>; T] =
unsafe { MaybeUninit::uninit().assume_init() };

for (i, p) in producers.iter_mut().enumerate() {
p.write(prod_handle(ptr, i as u8));

}
// FIXME: Cannot do mem::transmute from MaybeUninit to
// a const generic array.
// See https://github.com/rust-lang/rust/issues/61956
let prod_ptr = addr_of!(producers) as *const _;
let producers = unsafe { core::ptr::read(prod_ptr) };
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Issue #2: Dangling Pointer

Figure: Elements can spill over the boundary of the ring buffer, so we
need to invoke memcpy twice.
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Issue #2: Dangling Pointer

// first memcpy
core::ptr::copy_nonoverlapping(

src as *const u8,
dst as *mut u8,
L - head,

);
// second memcpy
core::ptr::copy_nonoverlapping(

(src + C - head) as *const u8,
self.buffer.0 as *mut u8,
len - L + head,

);
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Issue #2: Dangling Pointer

// first memcpy
core::ptr::copy_nonoverlapping(

src as *const u8,
dst as *mut u8,
L - head ,

);
// second memcpy
core::ptr::copy_nonoverlapping(

(src + C - head ) as *const u8,
self.buffer.0 as *mut u8,
len - L + head,

);
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Issue #3: Incorrect Pointer Arithmetics (again)

error: unsupported operation: racy imperfectly overlapping
atomic access is not possible in the C++20 memory model,
and not supported by Miri's weak memory emulation

--> /Users/zk/wfmpsc/src/lib.rs:275:13
|

275 | atomic.store(val, ord);
| ^^^^^^^^^^^^^^^^^^^^^^ racy imperfectly
| overlapping atomic access is not possible
| in the C++20 memory model, and not
| supported by Miri's weak memory emulation

37 40



Issue #3: Incorrect Pointer Arithmetics (again)
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Conclusion



Conclusion

Be cognisant of the language’s semantic model

▶ The Rustonomicon7 is a good starting point
Familiarize yourself with the memory models that underpin
your stack
Use RAII and lifetimes to create safe viewtypes
Memory fragmentation is a powerful trade off
Learn from the OGs

7https://doc.rust-lang.org/nomicon/
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More Resources

Figure: Atomics and Memory Ordering by Jon Gjengset [video]
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https://www.youtube.com/watch?v=rMGWeSjctlY


Thanks for your attention!
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