
Writing Performant
Concurrent Data Structures

Adrian Alic

Software Engineer @ DFINITY
Website: https://alic.dev
Contact: contact@alic.dev

Rust Meetup Zürich
March 28, 2023

Overview

Case-study: Multi-producer, single-consumer queue.

Goals:
How to write such a queue
How to make it fast
How to reason about correctness

1 40

Overview

Case-study: Multi-producer, single-consumer queue.

Goals:
How to write such a queue
How to make it fast
How to reason about correctness

1 40

Motivation

A Multi-Core Logger

Figure: A sketch of a 5-core RISC-V SoC.

2 40

The Problem With Locks

Figure: Locking causes unpredicable latency jitter.

3 40

The Idea

A Bunch of Ring Buffers

4 40

Naive Rust Definition

// if you like pointer indirection
struct TLQ {

buffer: Vec<u8>,
head: u16,
tail: u16,

}

// if buffer size is known at compile-time
struct TLQ<const C: usize> {

buffer: [u8; C],
head: u16,
tail: u16,

}

However: this definition has some problems...

5 40

Lack of Cache Locality

If we store multiple TLQs in an array, iterating over heads and
tails becomes costly.

This problem of traversing fields is common in game
development (ECS).

6 40

Lack of Cache Locality

If we store multiple TLQs in an array, iterating over heads and
tails becomes costly.

This problem of traversing fields is common in game
development (ECS).

6 40

Improving Cache Locality

One solution: Struct of Arrays.

7 40

Improving Cache Locality

One solution: Struct of Arrays.

struct Offset {
head: u16,
tail: u16,

}

7 40

Improving Cache Locality

One solution: Struct of Arrays.

struct Offset {
head: u16,
tail: u16,

}

struct Buffer<const C: usize> {
buffer: [u8; C],

}

7 40

Improving Cache Locality

One solution: Struct of Arrays.

struct Offset {
head: u16,
tail: u16,

}

struct Buffer<const C: usize> {
buffer: [u8; C],

}

struct Queue<const T: usize, const C: usize> {
offsets: [Offset; T],
buffers: [Buffer<C>; T]

}

7 40

New Layout Visualized

Figure: Our consumer can now iterate through all offsets without tons
of cache misses.

Some languages like Zig have built-in support for the SoA
pattern1.

1https://kristoff.it/blog/zig-multi-sequence-for-loops/
8 40

https://kristoff.it/blog/zig-multi-sequence-for-loops/

The Memory Model

The Illusion of Safety on x86

Figure: Don’t do this. The memory ordering I chose for my atomic ops
only worked on x86, but blew up on a weaker memory model (aarch64).

9 40

Segfaults on aarch64

Figure: McKenney [1, p. 352] lists differences between hardware
platforms in detail.

10 40

C11 Memory Model

Rust follows the C11 memory ordering spec2. It includes:

2https://en.cppreference.com/w/cpp/atomic/memory_order
11 40

https://en.cppreference.com/w/cpp/atomic/memory_order

C11 Memory Model

Rust follows the C11 memory ordering spec2. It includes:

Specification of modification order:
RR/RW/WR/WW Coherency

Flavors of "before":
Sequenced-before
Dependency-ordered before
Inter-thread happens-before
Happens-before

Also relevant: evaluation order3

2https://en.cppreference.com/w/cpp/atomic/memory_order
3https://en.cppreference.com/w/cpp/language/eval_order

11 40

https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/language/eval_order

Concurrency Behavior of Our Queue

Our queue is essentially an SPSC without competing stores - thus
we have no need for atomic RMW primitives4.

4https://doc.rust-lang.org/std/sync/atomic/struct.
AtomicU64.html#method.compare_exchange

12 40

https://doc.rust-lang.org/std/sync/atomic/struct.AtomicU64.html#method.compare_exchange
https://doc.rust-lang.org/std/sync/atomic/struct.AtomicU64.html#method.compare_exchange

Concurrency Behavior of Our Queue

Our queue is essentially an SPSC without competing stores - thus
we have no need for atomic RMW primitives4.

4https://doc.rust-lang.org/std/sync/atomic/struct.
AtomicU64.html#method.compare_exchange

12 40

https://doc.rust-lang.org/std/sync/atomic/struct.AtomicU64.html#method.compare_exchange
https://doc.rust-lang.org/std/sync/atomic/struct.AtomicU64.html#method.compare_exchange

The Two Basic Queue Operations

Our SPSC requires two release-acquire pairs. We can look at the
first one below.

// producer thread // consumer thread
fn push(data) { fn pop() [u8] {
h = head.load(_) // read index
new_h = h + data.len() h = tail.load(_)

t = tail.load(_)
// write data
buffer[h..new_h] = data; // read data

buffer[t..h]
// update index }
h.store(new_h, _)

}

13 40

The Two Basic Queue Operations

Our SPSC requires two release-acquire pairs. We can look at the
first one below.

// producer thread // consumer thread
fn push(data) { fn pop() [u8] {
h = head.load(_) // read index
new_h = h + data.len() h = tail.load(acquire)

t = tail.load(_)
// write data
buffer[h..new_h] = data; // read data

buffer[t..h]
// update index }
h.store(new_h, release)

}

14 40

Implementation in Rust

Avoiding False Sharing

Since offsets are accessed concurrently, we need to be aware of
cache coherence effects.

Figure: The most common solution is to pad all shared fields to a cache
line.

15 40

Cache-Alignment for Each Offset

Figure: Fully padded version. No false sharing will occur.

16 40

A Possible Middle Ground

Figure: This hybrid version allows for atomic batch updates.

17 40

Implementation in Rust

#[repr(align(64))]
struct Tail(u16);

#[repr(align(64))]
struct Head(u16);

struct Offsets<const T: usize> {
tails: [Tail; T],
heads: [Head; T],

}

// Or alternatively, use the crossbeam_util crate
struct Offsets<const T: usize> {

tails: [CachePadded<Tail>; T],
heads: [CachePadded<Head>; T],

}

18 40

False Sharing Can Have a Large Impact

Figure: From a benchmark on false sharing 5

.

5https://alic.dev/blog/false-sharing
19 40

https://alic.dev/blog/false-sharing

Consumer-Side Pointer Compression

Figure: We can decrease the addressing granularity, reducing memory
footprint.

20 40

Pointer Compression Visualized

21 40

Implementation in Rust

struct Consumer<const C: usize> {
shared_tail: *const AtomicU16,
local_tail: usize,

}
fn update_tail(&mut self, val) {

self.local_tail = val;
self.shared_tail.store(

compress(self.local_tail, C), // <---
Ordering::Release

);
}
fn compress(tail: usize, C: usize) -> u16 {

let shift = if C <= 16 { 0 } else { C - 16 };
(tail >> shift)

}

22 40

Local Caching of Offsets

23 40

Local Caching of Offsets

23 40

Local Caching of Offsets

23 40

Local Caching of Offsets

23 40

Local Caching of Offsets

23 40

Crafting Safe Abstractions

Limits of the Borrow Checker

The borrow checker and lifetime system is not designed to
reason about correctness of arbitrary concurrent data structures.

Example: Atomics

impl AtomicUsize {
pub fn store(&self, val: bool, order: Ordering) {

// SAFETY: any data races are prevented by atomic
// intrinsics and the raw pointer passed in is
// valid because we got it from a reference.
unsafe {

atomic_store(self.v.get(), val as u8, order);
}

}
}

24 40

Newtyping Heads and Tails

Newtyping your data structures to give them semantics can
prevent many subtle bugs.

type utail = u16;
type udefault = u32;

type AtomicTail = AtomicU16;
type AtomicHead = AtomicU32;

// Read and write permissions
struct RWHead<const C: usize>(*const AtomicHead);
struct RWTail<const C: usize>(*const AtomicTail);

// Read-only permission
struct ReadOnlyHead<const C: usize>(*const AtomicHead);
struct ReadOnlyTail<const C: usize>(*const AtomicTail);

25 40

Incorporating Newtypes Into Data Structure

Good newtypes communicate intent clearly.

pub struct Consumer<...> {
tails: [RWTail<C>; T],
heads: [ReadOnlyHead<C>; T],
buffer: ReadOnlyBuffer<T, S, L>,

}

pub struct Producer<...> {
pub head: RWHead<C>,
pub tail: ReadOnlyTail<C>,
pub buffer: RWBuffer<L>,

}

26 40

Const Generics Help With Safety

impl<
const T: usize, // # of producers
const C: usize, // bitsize of queue
const S: usize, // # of bytes (total)
const L: usize, // # of bytes (per producer)
A: ThreadSafeAlloc, // custom allocator type
> ProducerHandle<T, C, S, L, A> {

// ...
}

27 40

Reading From Queue With RAII

fn pop(&self, pid: usize) -> Vec<u8>;

28 40

Reading From Queue With RAII

fn pop(&self, pid: usize) -> Vec<u8>;

fn pop(&self, pid: usize, dst: &mut [u8]) -> usize;

28 40

Reading From Queue With RAII

fn pop(&self, pid: usize) -> Vec<u8>;

fn pop(&self, pid: usize, dst: &mut [u8]) -> usize;

fn pop<'a>(&'a mut self, pid: usize) -> &'a [u8];

28 40

Reading From Queue With RAII

fn pop(&self, pid: usize) -> Vec<u8>;

fn pop(&self, pid: usize, dst: &mut [u8]) -> usize;

fn pop<'a>(&'a mut self, pid: usize) -> &'a [u8];

fn pop<'a>(&'a mut self, pid: usize) -> Section<'a>;

struct Section<'a>{buffer: &'a [u8], ... };

impl<'a> Drop for Section<'a> {
fn drop(&mut self) {

unsafe {
// increment tail atomically

}
}

}

28 40

Reading From Queue With RAII

// max capacity is 2^3 - 1
let (tx, mut rx) = wfmpsc::queue!(bitsize: 3, producers: 1);
tx[0].push(b"5678901");
{

let mut section = rx.pop(0);
for c in section.get_buffer().iter() {

// iterate over section and do things
}

} // dropping buffer

29 40

Reading From Queue With RAII

// max capacity is 2^3 - 1
let (tx, mut rx) = wfmpsc::queue!(bitsize: 3, producers: 1);
tx[0].push(b"5678901");
{

let mut section = rx.pop(0);
for c in section.get_buffer().iter() {

// iterate over section and do things
}
let mut another_one = rx.pop(0);
// ^^^^^^^^^
// |
// + can't create another section
// while previous one in scope
black_box(§ion);

} // dropping buffer

30 40

Runtime Analysis with Miri

What Is Miri?

Miri6 is an intepreter for Rust’s Mid-Level IR that dynamically
checks for undefined behavior.

Checks include:
OOB memory access & use-after-free
Illegal memory alignments
Reading from uninitialized memory
Data races
Violation of stacked borrows aliasing model

6https://github.com/rust-lang/miri
31 40

https://github.com/rust-lang/miri

Issue #1: Uninitialized Arrays

Can you spot a potential problem here?

let mut producers: [Producer<...>; T] = { mem::zeroed() };

for (i, p) in producers.iter_mut().enumerate() {
*p = self.get_producer_handle(i);
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^
// |
// asssume this function returns a valid object

}

Problem: The assignment calls Drop::drop on the old value.
This violates the producer’s atomic refcount invariant.

32 40

Issue #1: Uninitialized Arrays

Can you spot a potential problem here?

let mut producers: [Producer<...>; T] = { mem::zeroed() };

for (i, p) in producers.iter_mut().enumerate() {
*p = self.get_producer_handle(i);
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^
// |
// asssume this function returns a valid object

}

Problem: The assignment calls Drop::drop on the old value.
This violates the producer’s atomic refcount invariant.

32 40

Issue #1: Uninitialized Arrays

let mut producers: [MaybeUninit<Producer<...>>; T] =
unsafe { MaybeUninit::uninit().assume_init() };

for (i, p) in producers.iter_mut().enumerate() {
p.write(prod_handle(ptr, i as u8));

}
// FIXME: Cannot do mem::transmute from MaybeUninit to
// a const generic array.
// See https://github.com/rust-lang/rust/issues/61956
let prod_ptr = addr_of!(producers) as *const _;
let producers = unsafe { core::ptr::read(prod_ptr) };

33 40

Issue #2: Dangling Pointer

Figure: Elements can spill over the boundary of the ring buffer, so we
need to invoke memcpy twice.

34 40

Issue #2: Dangling Pointer

// first memcpy
core::ptr::copy_nonoverlapping(

src as *const u8,
dst as *mut u8,
L - head,

);
// second memcpy
core::ptr::copy_nonoverlapping(

(src + C - head) as *const u8,
self.buffer.0 as *mut u8,
len - L + head,

);

35 40

Issue #2: Dangling Pointer

// first memcpy
core::ptr::copy_nonoverlapping(

src as *const u8,
dst as *mut u8,
L - head ,

);
// second memcpy
core::ptr::copy_nonoverlapping(

(src + C - head) as *const u8,
self.buffer.0 as *mut u8,
len - L + head,

);

36 40

Issue #3: Incorrect Pointer Arithmetics (again)

error: unsupported operation: racy imperfectly overlapping
atomic access is not possible in the C++20 memory model,
and not supported by Miri's weak memory emulation

--> /Users/zk/wfmpsc/src/lib.rs:275:13
|

275 | atomic.store(val, ord);
| ^^^^^^^^^^^^^^^^^^^^^^ racy imperfectly
| overlapping atomic access is not possible
| in the C++20 memory model, and not
| supported by Miri's weak memory emulation

37 40

Issue #3: Incorrect Pointer Arithmetics (again)

38 40

Conclusion

Conclusion

Be cognisant of the language’s semantic model

▶ The Rustonomicon7 is a good starting point
Familiarize yourself with the memory models that underpin
your stack
Use RAII and lifetimes to create safe viewtypes
Memory fragmentation is a powerful trade off
Learn from the OGs

7https://doc.rust-lang.org/nomicon/
39 40

https://doc.rust-lang.org/nomicon/

Conclusion

Be cognisant of the language’s semantic model
▶ The Rustonomicon7 is a good starting point

Familiarize yourself with the memory models that underpin
your stack
Use RAII and lifetimes to create safe viewtypes
Memory fragmentation is a powerful trade off
Learn from the OGs

7https://doc.rust-lang.org/nomicon/
39 40

https://doc.rust-lang.org/nomicon/

Conclusion

Be cognisant of the language’s semantic model
▶ The Rustonomicon7 is a good starting point

Familiarize yourself with the memory models that underpin
your stack

Use RAII and lifetimes to create safe viewtypes
Memory fragmentation is a powerful trade off
Learn from the OGs

7https://doc.rust-lang.org/nomicon/
39 40

https://doc.rust-lang.org/nomicon/

Conclusion

Be cognisant of the language’s semantic model
▶ The Rustonomicon7 is a good starting point

Familiarize yourself with the memory models that underpin
your stack
Use RAII and lifetimes to create safe viewtypes

Memory fragmentation is a powerful trade off
Learn from the OGs

7https://doc.rust-lang.org/nomicon/
39 40

https://doc.rust-lang.org/nomicon/

Conclusion

Be cognisant of the language’s semantic model
▶ The Rustonomicon7 is a good starting point

Familiarize yourself with the memory models that underpin
your stack
Use RAII and lifetimes to create safe viewtypes
Memory fragmentation is a powerful trade off

Learn from the OGs

7https://doc.rust-lang.org/nomicon/
39 40

https://doc.rust-lang.org/nomicon/

Conclusion

Be cognisant of the language’s semantic model
▶ The Rustonomicon7 is a good starting point

Familiarize yourself with the memory models that underpin
your stack
Use RAII and lifetimes to create safe viewtypes
Memory fragmentation is a powerful trade off
Learn from the OGs

7https://doc.rust-lang.org/nomicon/
39 40

https://doc.rust-lang.org/nomicon/

More Resources

Figure: Atomics and Memory Ordering by Jon Gjengset [video]

40 / 40

https://www.youtube.com/watch?v=rMGWeSjctlY

Thanks for your attention!

References

Paul E McKenney.
Is parallel programming hard, and, if so, what can you do about
it?
arXiv preprint arXiv:1701.00854, 2017.

	Motivation
	The Idea
	The Memory Model
	Implementation in Rust
	Crafting Safe Abstractions
	Runtime Analysis with Miri
	Conclusion
	Appendix

